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ABSTRACT 

The notion of f/P universality is shown to hold in a broad class 

of models even when an elementary version of the f-coupled Pomeron 

does not. It is then applied to triple-Regge vertices (ij k). At the same 

time we invoke exchange degeneracy, but only when k k P (the case 

k = P was recently shown to lead to inconsistencies, at least if applied 

exactly). Given the f and P Regge residues for a two-body process 

like pp - pp, we can then relate PPR, RRP, RRR and RPP to PPP 

(where R = f, O) and mrR to rrrrP, which can be calculated from the rp 

asymptotic cross section; the cross terms RPR and PRR drop out, but 

the RPP and PRP must be kept. This leaves only PPP to be actually 

fitted to the data. It serves mainly to fix the overall scale of the cross 

sections at a given t. The shapes of the missing-mass distributions and 

the deviations from scaling are all predicted in our scheme. The results 

are in fairly good agreement with both high and low missing mass data 

(the latter via a finite-mass sum rule). Finally, if we combine our 

approach with factorization, we can predict the cross sections for 

processes like purr- - pX even in a region where non-scaling terms are 

important. 
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I. INTRODUCTION 

There has recently been a considerable amount of interest in 

triple-Regge couplings, which play an important role in many high- 

energy situations. They can be most directly extracted from inclusive 

cross sections near the edge of phase space. Even here, however, this 

is often difficult because of the large number of terms which can come 

in. in ee - pX, for example, we can have the PPP, PPR, RRP, RRR, 

rrrrP and ~riR terms, even after we impose exchange degeneracy, where 

R is the leading meson trajectory and P is the Pomeron. Recently, it 

has been argued that an exact application of exchange degeneracy is 

inconsistent with G-parity so that we must also include at least the 

RPP and PRP terms. 
1 

It would therefore be desirable to have some 

symmetry or universality scheme which would relate the R and P to 

each other. 

Several years ago, Chew and Snider2 and Carlitz, Green and 

Zee (CGZ)3 argued that in certain classes of models the f-P Regge- 

residue ratio is a universal quantity, independent of the process 

involved. The scheme can be generalized to include the f ‘, and has 

been found to give reasonable agreement with experiment, both for two- 

body3 and inclusive processes. 
4 

By applying it to processes where the 

“external lines” are Regge exchanges or complex systems we shall 

find that we can relate many of our triple-Regge vertices to each other, 
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given only two-body scattering data. Some of our results have been 

reported elsewhere. 5.6 Here we include the RPP cross term, 

consider addition data, including low missing mass data through finite- 

mass sum rules, give a more general derivation of our universality 

scheme and combine it with factorization, which permits us to relate 

different cross sections to each other, even when scaling does not 

hold. 

In Sec. II, we consider a derivation of f/P universality based on a 

generalized two-component Pomeron, factorization and a weak form of 

average duality. It is a generalization of the derivation of CGZ, but does 

not in general lead to the elementary CGZ version of the f-coupled Pomeron, 

even though the predictions are essentially the same. In Sec. III we 

consider the triple-Regge expansion and how f- o exchange degeneracy 

can be applied, particularly in view of the remarks of Ref. 1,. In 

Sec. IV we apply f/P universality to relate the different triple-Regge 

vertices to each other. We also write down simple models for TT 

exchange. In Sec. V, we compare our results with the data, including 

low missing-mass data through finite mass sum rules. Finally in 

Sec. VI, we illustrate how factorization can be used to relate pp -+pX 

to a process like pr’- + pX, even when non-scaling terms are important. 

II. A GENERALIZED DERIVATION OF f/P UNIVERSALITY 

As in Ref. 3, we will combine duality with a general picture of 
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the Pomeron. We will assume a much weaker form of (average) duality, 

however, and base ourselves on a broader class of models. We shall 

see that this no longer leads to an f-coupled P, at least in the original 

elementary sense of CGZ. But we find that we still get f/P universality 

as well as an “effective” f-coupled P, so that we essentially get the same 

kind of predictions as in Ref. 3. 

The two-component picture of the Pomeron has been quite success- 

ful in accounting for many of the observed properties of multiparticle 

production. 
7 

It asserts that the production amplitude is made up of a 

“multiperipheral” component, with relatively small rapidity gaps, and a 

“diffractive” component with one large rapidity gap. We assume that 

these components can be represented by Figs. i(a) and i(b). The 

circles represent low subenergy(s ‘) clusters (i. e., amplitudes cut off 

at s ’ = sl), which may include background as well as resonance 

contributions. To avoid double -counting we would then have to insert 

a threshold term at s = s1 on the Regge exchanges R and P of Fig. 1, 

where s = s 1 is the separation point between the low-energy resonance 

and the high-energy Regge regions. The rectangle in Fig. l(b) would 

normally be something like a multiperipheral chain but could also be some 

more complicated production mechanism. The ingoing lines of Fig. 1 

could be either ordinary particles or could themselves be Regge 

exchanges. 

If we insert Fig. 1 into a unitarity relation we get the absorptive 
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part A. Ignoring the cross terms, which can be argued to be small, 
7 

this is then made up out of the diagrams of Figs. 2(a) and 2(b). These 

require a knowledge of Fig. 3(a). Actually as long as one only needs 

A, one only has to know the absorptive part A0 of Fig. 3(a). 
8 

If one 

assumes average duality this is then equal to Fig. 3(b) on the average. 

More precisely we have generalized finite-energy sum rules 

s1 
I A0 (s’, t)p,b’)ds ’ =Ibm(t) ;’ s’Um(t)pnjs’)ds’ (2.1) 

0 m 0 

cr 
where Zb s m m is the high-s behavior of Fig. 3(b) and the p,(s) are 

weight functions. For ordinary particle scattering, pn(s) = sn where 

n = integer, but if the “external” lines of Fig. 3 are Regge exchanges, 

p, may be more complicated (see, e.g. , Sec. III). In general Ao, p, 

and b m 
could also depend on the momentum-transfer variables or virtual 

“masses” of the “external” Regge lines of Fig. 3. 

If we assume that Eq. (2.1) is sufficient to determine the overall 

rormalization of Ao, then it must lead to the form 

AO(s,t) = c bm(t)H[s,a &)I. m 
m 

(2.2) 

This would be the case, for example, if we were to parametrize A0 by 

a sum of delta-functions in s(or Breit-Wigner forms) and then used the 

same number of sum rules (2. 1) to solve for the coefficients. We may 

do this either by considering a given s 1 and several p,, or, if we assume 
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semi-local duality, by taking the lowest p, and several values of si, 

placed midway between resonances. Of course, in the ultimate limit 

of completely local duality, we simply have 

H(s,cu) = So . (2.3) 

If we assume factorization we can write 

b,(t) = ymW;mW (2.4) 

where y m and ;, are the left and right-hand couplings of Fig. 3(b). If 

we now use Eqs. (2. 2) and (2.4) for Fig. 3(a)--in other words if we 

assume that Fig. 3(b) is a good approximation to Fig. 3(a) in the above 

average sense--we see that Figs. 2(a) and 2(b) reduce to Figs. 4(a) 

and 4(b). Both of these have the form of Fig. 5 so 

A(s,t) = Y 
mm’ 

acm(t)Bmm.(s,t)ybdm.(t) (2.5) 

where B is independent of what a, c, b, d are. We must be careful in 

interpreting diagrams like Figs. 4 and 5, however. Strictly speaking 

the Regge “propagators” s0 for the m, m’ lines must be replaced by the 

functions H(s, cu), as we have seen. 

For certain purposes it is desirable to make a partial-wave 

projection of Eq. (2. 5). We then have 

A(t,j) = c Y (t) B 
mm’ acm mma(j,thbdm,(t) (2.6) 
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If we make the additional assumption that H(s, a) in Eq. (2. 2) does not 

depend on the momentum transfer variables or virtual “masses” of the 

R, P Regge lines of Fig. 4, we can further decompose 

B mm,(t,j) = Hb.~m(t)]Vmm,(j,t)H[j,a;n,(t)l (2.7) 

where V no longer depends on a or (Y 
m m ,, but only on the internal couplings 

of Fig. 4. This would be true in the local duality limit (2. 3), for example, 

in which case 

H(j,e) c (j-CuI-’ (2.8) 

at least if s 
1 

is sufficiently large and j is not too close to rr. 

So far we have assumed a two-component Pomeron. Clearly our 

derivation continues to apply in the much more general case where the 

Regge exchanges R of Figs. i(a),2(a) and 4(a) are allowed to be Pomerons 

as well as lower-lying Reggeons. The inclusion of cross terms likewise 

does not affect our conclusions. 

Let us now turn to the t-channel isospin It = 0 state. Here, in 

general m,m’ = P,f,f’. The CGZ scheme corresponds to dropping the 

P contribution, but we shall keep it, so we no longer have an f-coupled P. 

Suppose for a moment we consider a process like rrp or pp scattering, 

where the f ’ decouples. Now the Pomeron, which corresponds to 

A?= ?I? 
br;.; ’ 

armes from the leading s behavior of B in Eq. (2. 5), or 

equivalently from the leading j-singularity at j = ~~in Eq. (2.6) If, 
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in addition, we assume that the Pomeron factorizes, as seems to be 

borne out by the data, we obtain 

bp = Y acP ‘bdP = Y r 
m,m’=P,f acm mm “bdm’ (2.9) 

where F mm’ 
is independent of a, c, b, d. 

Suppose we now consider the special case a = b, c = d. Then 

Eq. (2.9) is equivalent to a quadratic equation for the ratio yacf/yacP. 

This has two solutions 

Y acflYacP = {-rfp*[rfpZ - rff(rpp-i)l+~/rff, (2.40) 

However, the physically relevant solution must correspond universally 

to either the + or the - . If it corresponded to + for ac and - for bd, 

for example, Eq. (2.9) would no longer be satisfied. Since the Fmm, 

are independent of ac, it then follows that y ac f/yac p is likewise 

independent of ac. This in turn means that 

bf/bp = y acf ‘bdf acPYbd P Iv = universal quantity, (2. ii) 

Although Eqs. (2. 5) - (2. 7) include m,m’ = P and so do not 

correspond to an f-coupled P in the elementary CGZ sense we can still 

obtain a kind of effective f-coupled Pomeron by rewriting Eq. (2.9) as 

bp = Y acf ‘ff’bdf 
(2.12) 
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where 

‘bdP Y Y 
r 

ac P ac P 
ff = rff + Ybdf FfP %acf rPf += 

‘bdPF 

‘bdf pp 
(2.13) 

Since all the quantities on the right -hand side are independent of a, b, c, d 

it follows that we can reproduce all the residue relations we would obtain 

by keeping only Fff , i. e., if we had a true f-coupled Pomeron. 

So far we have only considered cases where the f’ decouples. In 

general the situation is more complicated. If we assume that Regge 

vertices continue to satisfy SU(31, however, and if we assume that 

Eq. (2. 7) applies, we can still get a relatively simple result by considering 

the SU(3) singlet (1) state instead of just the It = 0 state. 
3 

In order to 

guarantee that the f’ decouples from pions and nucleons, this state 

must correspond to the case of “ideal” mixing 

1 = 3-i/2 [ ,i/2f + fl (2.14) 

as far as f and f’ is concerned. In this state then we have 

Vff =NEvf,, = 2Vf,f,. (2.15) 

Since the Pomeron itself is assumed to be a pure singlet state we also 

have 

‘ifP =fivf,p. (2.16) 

We will now make the usual assumption that symmetry breaking 

only affects masses (and trajectories) but leaves couplings SU(3) 
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symmetric. 3 Since B depends on LY and CL 
m m’ only through the H factors 

in Eq. (2.7), as we have seen, Eqs. (2. 15) and (2.16) then continue to 

hold even with symmetry breaking. If we now repeat the arguments 

leading up to Eq. (2.9) from Eqs. (2.6) and (2.7) we find that we recover 

exactly the same equation (2.9) but with the replacement 

Y acf -Yacf = Y,,f +&Yacf” (2.17) 

r = H(m f ,, cup)/ H’cf> apI (2. 18) 

and similarly for ybdf . The argument for f/P universality proceeds 

exactly as before except that now it is quantities like 5 
acf 

/y 
ac P 

which 

are universal, rather than y acf 
/y 

ac P’ We also recover the effective 

f-coupled Pomeron expression (2.12). but again with the replacement 

(2.17 ). 

Perhaps the simplest example of f/P universality is in the case of 

forward rrp and pp scattering where the f ’ decouples. With af(0) = 

0. 5, 

bf(0)/bp(O)= 0.9, np scattering 

= 1.2, pp scattering . 

(2.19) 

(2.20) 

The precise value actually depends to some extent on the intercept 

@fuf(oL 
3 

Thus bf/bp is universal to the same sort of accuracy as the 

assumptions, such as duality and factorization, which went into the 



-12- FERMILAB-Pub-74/ 78-THY 

derivation of Eq. (2. 11). 

III. TRIPLE-REGGE FORMALISM AND EXCHANGE DEGENERACY 

Let us now turn to an inclusive process ab -t cX. When the 

square of the missing mass M 2 is << s, we have the Regge behavior 
2 ai(t) 

b/M ) (see Fig. 6). The cross section, which involves the squares 

of such graphs is then given by 

sda 1 S 
rui(thj(t) 

=- 
dt dM2 I( 1 s --i (3.1) 

1.1 M 
xij(M2, t) 

where zij is proportional to the forward “absorptive part 119 for the 

Regge-particle “scattering” process ei (t) + b - 4(t) + b (see Fig. 7). 

Thus, when M2>> 1 GeV2, we expect xij itself to have the Regge behavior 

iiij(M2,t) = 
2 %(O) 

k 
GijkW(M 1 (3.2) 

which means that Fig. 7 reduces to a sum of triple-Regge graphs 
10 

(Fig. 8); we are taking M2, s and t in units of GeV 
2 and the cross section 

of (3. 1) in units of mb-GeV’. Factorization then gives 

Gj:k (t ) = Y,, i(t )Y 
.I acj (t ) xp ) xj (t ) g ijk (t ) 

x Im Xk(0) ybbk(0) (3.3) 

where the y are Regge-particle couplings, the Xi are the usual signature 

factors 
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. -1TI(Y Xi(t) = --z; Tla (t) ) 
and g., is the actual triple-Regge coupling. 

uk 

When M2 is not large the cross section is more complicated. 

Since it proportional to the absorptive part of Fig. 7, however, it is still 

related to the triple-Regge couplings of Fig. 8 through Finite-Mass 

sum rules. 11 
In the case of a process like pp- pX or pr- - pX, where 

a = c, the lowest-moment sum rule reduces to the form 

dG2 %I2 sdo 

0 dtdM2 ijk 

(3.41 

-2 where M = M2 - t - rn: is a crossing-symmetric variable which is a 

generalization of the familiar two-body scattering variable v = $(s-u). 

The upper limit g2 o is a point at which the asymptotic form (3. 2) is 

already valid. If we assume semi-local duality, however, it could be 

taken to have a much lower value, provided this is taken half-way between 

resonances. 

In the specific process pp - pX we have the exchanges i, j, k = 

P, f, w , TI; the p and A2 are known to couple only weakly to protons. If 

we assume exchange degeneracy the situation simplifies even further, 

since we can consider the f and w as a single exchange R. Moreover, 

since P is approximately pure imaginary and R is real, the off-diagonal 

terms RPP, PRP, RPR and PRR must be absent. This argument has 
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has been used in the past to simplify the description of the triple-Regge 

region. 
6,12,13 

Recently it has been pointed out that the above result is inconsistent 

with G-parity. 
1 This is because the only way we can guarantee that the 

RPP + PRP term drops out for all s and M2 is for the fPP + PfP to be 

cancelled by wPP + P&P. However this niust vanish by G-parity, whereas, 

as we shall sse in the next section, the fPP + PfP term is nonzero. Thus 

there is no way in which we can maintain exchange degeneracy, except 

perhaps in a very limited range where the fPP + PfP and fPf + Pff could 

be roughly cancelled by the WP~W + Pww. 
14 

In what follows we shall therefore give up exchange degeneracy for 

all triple-Regge graphs (Fig. 8) with k = P, but continue using it 

whenever k # P. The justification for such an assumption is that the 

latter graphs should be dual to quasi-two-body scattering graphs (at 

least when we do not have i = j = P), 15 for which we know that exchange 

degeneracy has some validity. We shall therefore retain PfP + fPP but 

assume that Pff + fPf is cancelled by Pw w + WPW so that there is no 

PRR + RPR term. However, for comparison, we also try fits where 

we deliberately drop PfP + fPP. We shall see that our predictions for 

the data are not too different in the two cases although the required 

PPP coupling is larger in the latter case. 

In addition to PRR and RPR various other cross terms also 

drop out. In particular the f UP + wfP drops out by G parity whereas 
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the fwk + wfk with k # P drops out by exchange degeneracy. The term 

i = P, j = TI can only involve k = TT, which, however, vanishes because 

the rpp vertex goes to zero in the forward direction. The i = f, j = r 

term vanishes for the same reason. The i = w, j = TT term only permits 

k = p, which couples weakly to protons and so can also be neglected. 

Since all the cross terms except the fPP + PfP drop out we can 

only have k = P,f. We are therefore left with the terms PPP, PfP, fPP, 

RRP, PPf, RRf, ~TP and rrrrf. Here R = f,w so RRf = fff + wwf and 

RRP = ffP + OWP. Now gfff = -gwwf by exchange degeneracy. We 

cannot use the same argument to relate ffP to WWP, since we are not 

assuming it when k = P. However, exchange degeneracy does give gfpf 

= -g WPW since the corresponding two diagrams must cancel, as we 

have seen. If we assume vertex symmetry for these triple-Regge 

couplings we can conclude that gffp = -gwwp also. 

IV. RELATIONS BETWEEN TRIPLE-REGGE COUPLINGS 

The simplest set of relations arises when we apply f/P 

universality to the exchanges k in the “absorptive part” of Eq. (3. 2) 

for the Regge-particle “scattering”process cui(t) + b + aj(t) + b. Here 

the functions Gijk(t) are proportional to the Regge residue bk(0) 

for this’process”. As long as the f’ decouples, f/P universality (2. ii) 

then gives 
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Gijf(t)/ GijP(t) = b;(O,/bp,(O, (4.1) 

where the right-hand side is the f/P Regge residue ratio for pp or rrp 

scattering. 

In our case, Eq. (4. 1) gives the correct relation in all cases 

except when i = j = P. This is because f’ can couple to PP, whereas 

it cannot couple to any other ij combination (with i, j = P, f,w , a), at 

least in the case of ideal mixing, since f ’ is made up only of strange 

quarks and f,w , TT of non-strange quarks so that we cannot draw any 

quark-duality diagrams involving f ‘. We must therefore make the 

replacement (2.17) for the gppf coupling which means that Eq. (4. 1) 

is replaced by 

gppf(t) + ‘9 gppf .(t’ ;;;;;) = b; (0’. 
gPPP@ ’ b;(O) 

(4.2) 

Now we are assuming the P to be an STJ(3) singlet so that the PP state is 

likewise a singlet. With the ideal mixing (2.14) we then have 

gPPf ’ = gppfldT 

which, when combined with Eq. (4. 2), gives 

[I+ $r(o'l Gppf(tl/ Gppp(t) = b;(O)/bp,(O). 

(4.3) 

(4.4) 

Equation (4.1) therefore has an extra correction factor when i = j = P. 

We can estimate it from. Eqs. (2.18) and (2.8). Taking a,(O) = 1, 
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al,(O) = 0. 5 and af ,(O) = 0, we have ir = 0. 25, which is fairly small. 

We shall see in the next section that its inclusion only has a small 

effect on our predictions. 

A second set of relations can be obtained by applying f/P 

universality directly to the exchanges i in the inclusive process (Fig. 6) 

itself, treating it as a quasi-two body process with Regge behavior 

biXi(s/N12)u1. Since the inclusive cross section involves the square of 

sums of such graphs we obtain then 

Gifk(t ’ GTik(t ’ bPfWXf (tl 

Gipk(tl = 
= 

G%fk(t ’ b; (t’ X,(t) ’ 
(4.5) 

at least in situations where the f’ decouples. Once again the right-hand 

side involves the f/P ratio for pp or np scattering. 

As in the case of (4. i), Eq. (4. 5) is always correct unless 

i = k = P. If we repeat the sort of procedure which led to Eq. (4.4) 

we obtain for the latter case 

(t I 
* 

GPfP GfPP(t) = f f bp(t)X (t) 

GPPP (t) = G* [i +$r(t)l-‘, (4.6) 

PPP(t ) b;(t)X+t) 

Once again, we shall see in the following section that the extra correction 

factor has only a small effect on our predictions. 

Equations (4. i), (4.4) and (4.6) relate the rrrrf to ir?rP and PfP, 

fPP, PPf to PPP. In addition, if we use the exchange degeneracy and 
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vertex symmetry results g, w ~ = - gffk obtained in the last paragraph 

of the preceding section, we obtain 

with 

G RRk~ = Gwwk + Gffk (4.7) 

G wokWIXw(t)[ -2 = GfflcWIXf(t’I -2 (4.8) 

for k = P,f. Together with Eqs. (4. i), (4.4), (4. 5) and (4.6) these 

relations now permit us to relate RRP and RRf to PPP. We can then 

reduce everything to PPP and rrrrP , given bF(t )/ 8” (t ). 

For the f/P ratio we will take the intermediate value b:/bF = 1. 1 

at t = 0; see Eqs. (2.19) and (2. 20). For t # 0 we could use the results 

of detailed Regge fits to, say, pp scattering. A simpler procedure is 

simply to require that we reproduce u 
tot 

and o el, given a spin-averaged 

amplitude 

T= 1 b;(t)XiWs 
y(t) 

(4.9) 
i =P, w,f 

with 
crp(t) = 1 + 0. 2t, (4.10) 

a =a f w = 0.5+t, (4.111 

“Pt 
b:(t) 1X$1 1 = bi(O)e 

and, assuming f-o exchange degeneracy, 

bt (tl = b;(t) = bI(0)eaft G/r ra(t)] 

(4.12) 

(4.13) 
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where the I’(a) is put in to guarantee that T does not blow up at (Y = 0. 

These forms are approximately consistent with what is required to 

reproduce the correct du/dt r 16a [ T [ 2/s2. We then adjusted bp(0) 

to the experimental atot = 16~s 
-1 

ImT(t = 0) at each energy; since otot 

actually varies slightly with energy, bp(0) will vary slightly also-- 

this is then an approximate way of taking into account the fact that the 

P is not a pure pole at j = 1. Given bPf(O)/bF(O), we then adjusted the 

constants a and af so as to reproduce the correct experimental 
0 p 

IT 2 
el I 

dt(d o/It) in the range 10 < s < 200 GeV2, using the curve 

drawn bym Morrison. 
16 We obtained ap - af z 3.8 with b:(O)/bL(O) = 1. 1 

and a - 
P 

af = 3. 0 with b:(O)/ b:(O) = 1.2, the value most appropriate 

for pp scattering. 
17 

In most of our fits we took the intermediate value 

aP - 
af z 3. 2, although the values a a = 3.7 and 2. 7 were also 

P- f 

tried, mainly for purposes of comparison. 

Although Grrap could be treated as a parameter in our scheme it 

is also possible to write down a simple model for it. From Fig. 6 with 

i = v we see that this contribution must be proportional to the total np 

asymptotic cross section D,(HP) =: 21 mb, i7 as well as the ITN coupling 

g2/4rr = 14.4. Specifically we have 18 

G 
-tF(t) 

(t - mt)2 
Dp(Tl, (4.14) 

where the denominator comes from the pion propagator and F(t) is a 
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“form factor” to take into account the fact that the pion is off-shell. We 

took two different models: 

(a) A Regge form with 

an(t) = t, F(t) = 1 (4.15) 

(b) An elementary-pion form with 

-2 [op(O) + 11 
CT(t) = 0, F(t) = (1 -t) (4.16) 

This F(t) is the off-shell extrapolation suggested by a simplified solution 

to the Amati,Bertocchi. Fubini, Stanghellini, Tonin (ABFST) i9 
multi- 

peripheral model (see, e.g., Ref. 20). 

One way of checking the above models for TI exchange is to look at 

the process np - pX, which can be extracted from dp -f pX. Here rrrP 

and rirrf are essentially the only surviving terms, with couplings which 

are exactly twice as large as for pp * pX. Figure 9 shows the resulting 

cross sections for both case (a) and (b). The results are in approximate 

agreement with preliminary Fermilab data. 21 

V. COMPARISON WITH EXPERIMENT 

In the preceeding section we saw that we can relate all the triple- 

Regge terms for pp -f pX to the PPP and rrrrP couplings. If we assume 

Eq. (4.15) or (4. 16) we moreover have an explicit expression for rrrrP. 

This means that Gppp (t) is now the only quantity which actually has to be 
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fitted to the data. Its main function then is to fix the overall magnitude 

of the cross sections at a given t value. The shapes of the missing- 

mass distributions and the deviations from scaling are all predicted in 

our scheme, and are not sensitive to the precise value of the overall 

magnitude. 

Figure 10 shows the results if we keep all the couplings, including 

fPP + PfP, and use the Regge-rr of Eq. (4.15). The solid lines correspond 

to the approximation of neglecting the f ’ correction, so Sr z 0. The 

overall magnitudes correspond to taking Gppp(t) =A 2.1 e 
3.9t 

, although 

there is no particular significance to the particular exponential parametri- 

zation we have chosen. The other parameters, ap- af = 3. 2 and 

b:(O)/b:(O) = 1.1, came from two-body data, as we have seen, and did 

not have to be fitted to the inclusive cross sections. They lead to the 

couplings listed in Table I. The dashed lines at t = -0.33 correspond 

to $r(t) = 0.25. This is the correct value at t = 0 with af ,(O) = 0 and 

continues to be approximately true for t # 0. We see that the curve is 

not too different from the corresponding (sblid) curve with gr = 0. 

Of course, the GpPp for $r = 0.25 has to be taken somewhat larger 

but it turns out to be within 15% of the one for ir = 0. For this reason 

we will take ir = 0 in all subsequent fits. 

The data in Fig. 10 is that of Ref. 22. We see that the agreement 

is fairly good and that we can reproduce the shallow dip in x( = 1 - M2/ s ). 

This is non-trivial if we remember that some of the individual triple- 
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Regge terms which make up the cross section themselves vary quite 

rapidly in the region of interest. In fact, a comparison of the solid and 

dot-dash-dot lines, for which we deliberately took the somewhat bigger 

value of 1. 6 for bF(O)/bi(O), shows that the position of the dip would 

not be given correctly if we allowed the value to deviate too far from that 

predicted by f/P universality. We can also approximately reproduce the 

deviation from scaling. Our deviation is somewhat smaller than the one 

given by the data. However, the latter itself seems to vary from one 

experiment to another, as can be seen e.g. , by comparing Refs. 22 and 

23. 

Figure ii shows the results if we drop the cross terms PfP and 

fPP, as would be the case if exchange degeneracy could be applied to this 

process (see Sec. III). We considered both the elementary-v of Eq. (4.16) 

(solid lines) and the Regge-n of (4.15) (dot-dash-dot lines ). There is 

no major difference between the two cases although the latter is some- 

what better. There is also no major difference from the solid lines of 

Fig. 10, which included the fPP + PfP term, although we now do have a 

somewhat bigger deviation from scaling. Of course, the G 
PPP needed 

in the two cases is different. 

The dashed line of Fig. ii corresponds to the case aP-af = 3.7. 

and is presented mainly for purposes of comparison. We see that the 

position of the dip has shifted to the right. This indicates that we will 

not get the correct position if we allow a - a to deviate too much from 
p f 
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the value predicted by f/P universality. 

In Fig. 12 we again consider situations [without the PfP + fPP term 

and with the elementary v of (4. 16)1 where bF(O)/bF(O) was deliberately 

chosen to have the somewhat larger value of 1.6, again mainly for 

comparison. In part this was done because the deviation from scaling 

is somewhat larger for the data of Ref. 23, with which we compare our 

results. We also tried to vary ap - af. The results, especially when 

compared with those of Fig. 11 again suggest that we cannot allow our 

parameters to vary too much from the values required by f/P universality. 

This statement may not be valid, of course, if we took a completely 

different parametrization from the one adopted here. 

We next used the parametrization of the solid lines of Fig. 11 

and extended it to much smaller values of M2. The results are shown 

as the solid lines of Fig. 13 and compared with the ISR data of Ref. 24 

at s = 930 GeV2, which essentially overlaps with that of Ref. 22, at 

t = -0. 25. We continue to get agreement in spite of the seeming tendency 

of the larger x data in Fig. 11 to lie above the triple-Regge curves. The 

dashed line uses the parametrization of the solid lines of Fig. 12. 

In comparing our predictions with the data it must be kept in mind 

that the triple-Regge expansion of (3. 1) and (3.2) is itself expected to 

break down at x = 0.80. 
12 

The expansion cannot then be considered 

more than an approximate formula in the first place, particularly for 

smaller x. Besides, the situation for two-body scattering suggests that 
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f/P universality and exchange degeneracy are not expected to be better 

than about 20% either. As far as the data is concerned,it must also 

be remembered that different experiments often give quite different 

results in overlapping regions. This can be seen for example by 

comparing Ref. (22) and (23) which have both different normalizations 

and different deviations from scaling. 

So far we have only been considering high-M2 data. However, the 

finite-mass sum rule (3.4) also permits us to check if our scheme is at 

the same time consistent with low-M‘ data. (Conversely, since we only 

have one unknown parameter Gppp, we could have used the latter to 

predict what the cross sections should be for high M‘. ) For the left- 

hand side (LHS) we will simply use the integrals evaluated by Ellis 

and Sanda 25 with G2 0 = M,” = 8 GeV2. At s = 56, t 2 -0.16, for example, 

we have LHS = 18.4 + 0.9 mb. On the other hand, if we use the parametri- 

zation of the ,solid lines of Fig. 11 we have a right-hand side RHS = 

16.9 mb., so that the sum rule is approximately satisfied. On the 

other hand, if we increase the RHS by a factor of 1. 16, so as to bring it 

into agreement with the normalization of Ref. 23, we obtain a RHS = 

i9.2 mb. 

VI. RELATION BETWEEN pp - px AND pr- - px 

Factorization of Regge couplings has led to numerous relations 

between various inclusive cross sections. Most of these are only 
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applicable in the scaling region, where the k = P exchange dominates. 

Since f/P universality relates the P to lower-lying exchanges, however, 

it can often enable us to relate cross sections even when non-scaling 

terms are important. 

Let us now consider prr- - pX. We again have the exchanges i, j 

= P, f, o , TI in Fig. 8, since the p and A2 only couple weakly to protons. 

These will certainly couple to k = P, f in exactly the same way as they 

did in pp + ‘pX. However, whereas tn the latter case the fPf + Pff term 

was cancelled by an WPW + I%w which was related to it by exchange 

degeneracy, in the pi- case, the WPW + Poe term vanishes because the 

QT~IT coupling is zero by G-parity. We therefore have an extra fPf + 

Pff term which, however, can be related to the PPP by f/P universality. 

The fwk + wfk terms drop out but this time not by exchange degeneracy 

(which does not apply in this case), but because the only such possibility 

is f ww + wf w which again vanishes because the w TTTT coupling is zero. 

The i = P, j = TI and i = f, j = li vertices can only involve k = TI, which 

vanishes because the TTITV vertex is zero by G-parity. 

One term, which could be excluded for pp - pX, but is not so easy 

to exclude for pi- - pX is the wrrp + ~~wp term. We shall nevertheless 

assume that its contribution is small. This is suggested by the relative 

smallness of the decay into TTO of the g resonance, which lies on the p 

trajectory and tends to decay primarily into TT~ and pp. 
26 

We are now left with the PPP, PfP, fPP, RRP, PPf, RRf, nrrP 
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and vrrf terms, which were also present for pp - pX, and the Pff and 

fPf terms, which only occur for pn- * pX. From the factorization 

relation (3.3), the former terms are related to the corresponding terms 

for PP - pX via the relations 

with 

G.? (t)/G!? (t) = 
1Jk 1Jk 

y rrTkm/ Yppk (0) 

Y lTaf(O) 

Yppf (O) 

= :,g:g: = o,(xp) = $ 
om (PP) 

(6.~ 1) 

(6.2) 

where we have used Eq. (2. lf), factorization and the quark model relation 

between the asymptotic total cross sections ooD. The Pff and fPf terms 

can be calculated from the PfP and fPP terms by using Eq, (4.1). We 

then have a complete description of pn- - pX in terms of quantities 

which were extracted from pp - pX. 

If the extra Pff ifPf term were zero, the n-p cross section would 

he just $ of the pp cross section. Since it is not, the relation is more 

complicated, Figure 14 shows the result of our predicted pn- - pX 

cross sections at t = -0.25, and s = 48,76. We have used the parametrization 

of the solid lines of Fig. ii, which included the PfP + fPP term and used 

a Regge-rr . The resulting cross sections (solid lines) are slightly too 

low compared with the 0.17 < -t < 0. 35 data of Ref. 27. This may, 

however, be due to a normalization discrepancy. If, for example, we 

increase everything by a factor of 1.16, to bring the pp +pX cross 



-27- FERMILAB-Pub-741 78-THY 

section into agreement with the normalization of Ref. 23, we obtain the 

dashed lines of Fig. ll. These curves are closer to experiment and we 

can con,clude that we have agreement with the data within normalization 

uncertainties. 

VII. CONCLUSION 

We have considered a generalized derivation of f/P universality 

which holds even when an elementary version of the f-coupled Pomeron 

does not. We then applied it to the Regge exchange in inclusive processes 

(mainly pp -r pX) in the triple-Regge region. Since w as well as f 

exchange are involved this was combined with exchange degeneracy, 

which was, however, applied only when k $ P in Fig. 8, a graph which 

is dual to quasi-two-body scattering and avoids the inconsistencies which 

arise when k = P. Using only data which can be extracted from pp - pp 

we can then relate the PRP, RPP, RRP, PPR and RRR terms to PPP 

and rrrrR to rrnP. Since we can write down a simple model for irrrP, only 

PPP actually had to be fitted to the data. 

Our scheme gives a fairly good description of the data. In 

particular, we can predict the shapes of the distributions in x, with a 

dip at about the right position, as well as an approximately correct 

deviation from scaling. The former is particularly nontrivial because 

it depends crucially on the relative magnitudesof the different couplings 

which come in (for example, the region near x = 1 is determined 
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mainly by i = P exchange while that near x = 0.8 by i = a). In fact 

the position of the dip deviates from its correct value if we vary some 

of our parameters away from the values predicted from two-body 

scattering data via f/P universality. 

Our GppP(t) [= 2.1 e3*9t 1 is not too different from the one 

obtained in some previous triple-Regge fits, at least in the t-range 

we have been considering. 
28 

The other couplings are more difficult 

to compare because we have a somewhat different parametrization 

from the one assumed in other fits. We keep more terms, and , besides, 

in a more general fit, where the terms are unconstrained, we can 

usually vary the relative magnitudes by quite large amounts without 

affecting the fit in any serious way (in our own case the terms are very 

strongly constrained). Even so, it is interesting to note that, at least 

for -t > 0.16, the fits of Roy and Roberts 
13 

for example, are consistent 

with G ppp = GppM and GMMp = GMMIVl, as would be required by the 

f/ P relation (4.1) with the ratio of Eq. (2.20). The experimental 

situation for smaller 1 t j is in any case more confusing at the present 

time (see the Appendix). 

Although we have only considered pp - pX and p=- * pX in the 

present paper, our methods should be applicable in many other cases, 

both for reducing the number of independent triple-Regge couplings and 

for relating different cross sections to each other via factorization as 

was done in Sec. VI. Additional results can also be obtained by using 
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something like SU(3) or the quark model. In many cases, of course, 

data does not yet exist in the triple-Regge region. However, in such 

cases one may still be able to check the results by using low missing 

mass data and finite-mass sum rules. 
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APPENDIX: A FIT AT SMALL 1 t 1 

The small - [ t 1 region is particularly interesting because different 

theoretical models give different predictions about the PPP coupling as 

ItI -0. On the other hand, the data for 1 t [ < 0 .16 is still rather 

confusing. The most accurate is at rather low energies and much of it 

is not strictly in the triple-Regge region. 29,30 The data of Ref. 31 is 

in the triple-Regge region but seems to be inconsistent with other data, 

as has been stressed, e.g., by Roy and Roberts. 13 

We will only consider a somewhat simplified description in which 

we drop the interference terms PfP and fPP and use the elementary-v 

expression (4.16 ). We saw in Sec. V that this should not affect the 

shapes of the distributions in x too much. It does lead to a somewhat 

bigger Gppp(t 1 but should not change its general t dependence. 

Suppose we simply take the parametrization of the solid lines of 

Fig. 12 and try to fit the data of Refs. 29 and 30. It turns out that the 

resulting cross section at t= -0.20, for example, is too low. This is 

presumably just a normalization discrepancy between the data of Refs. 

29 and 22., so we simply increase GPpp by 20%. In other words, we 

now have Gppp (t) = 1.2 x 3.1 e 
4.8t with a 

P - af = 3. 2. The resulting 

curves (dashed line) are shown in Fig. 15, where they are compared with 

the data of Ref. 29 at s = 50, Ref. 30 at s = 40 and Ref. 32 at s = 400. 

The small M2/s data is not strictly in the triple-Regge region in the 
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first two cases but is nevertheless described quite well by our model 

on the average. We see that our G PPP@ ), which is the dashed line in 

Fig. 16 is consistent with this data. Figure 16 also shows the corresponding 

i ppp(t ) = gppp(t )Gppp(t )kppp CO), for which we used Eq. (3. 3). 

On the other hand, if we attempt to fit the data of Ref. 31, we 

find that we do need a more complicated Gppp. Figure 17 shows the 

result of a fit using the form shown as the solid lines in Fig. 16. We 

see that gppp(t)in particular shows a rapid decrease as t-0. However, 

if we now try to see what the resulting model gives for the M2 

dependence, we find that it is only fair. In particular we cannot 

reproduce the dip in the data at M2= 20, a feature which does not seem 

to be present in other experiments. 

It is difficult to account for the discrepancy between the dashed and 

solid lines of Fig. 16. One possibility is that the data of Refs. 30 and 

32 involves values of ML which are too low for the triple-Regge description 

to be valid, even in an average sense; there is, after all, no reason in 

principle for Gi in the finite mass sum rule (3.4) to be small. The 

data of Ref. 32 does involve much larger M2, but is also much less 

accurate. A more likely explanation, however, is simply that the 

data are inconsistent at this time. Hopefully additional experiments 

will enable us to resolve this inconsistency. 
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Table I 

Triple Regge Couplings Corresponding to the 

Solid-Line Parametrization of Figure 10 

-t 0.16 0.20 0. 25 0.33 

GPPP 1.14 0.97 0. 80 0. 58 

G RRP 9.1 9.1 9.1 9. 5 

G irnP 116. C 97.0 80. 0 63. 0 

G + PfP GfPP 2.82 2.40 1.91 1.19 

G PPf 1. 25 1.07 0.88 Q... 64 

G RRf 10.0 10.0 10. 0 10.4 

G mrf 127.0 107.0 88.0 69. 0 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

FIGURE CAPTIONS 

(a) Multiperipheral component of a Multiparticle production 

amplitude 

(b) Diffractive component of a multiparticle production 

amplitude. 

Contributions to the absorptive part coming from 

(a) the multiperipheral and 

(b) the diffractive component. 

Diagrammatic representation of the duality relation (2. 1) 

relating the low-subenergy absorptive part (a) to Regge 

exchange (b ). 

Reduced form of Fig. 2(a) and (b) after applying the duality 

relation (2.1). 

A general form which includes both Figs. 4(a) and (b). 

Regge exchange for the inclusive process ab - cX. 

Regge-particle “scattering” amplitude. 

Triple-Regge graph. 

Prediction of np + pX using the pion exchange model. The 

solid lines correspond to the elementary7 of Eq. (4. 16) 

and the dashed lines to the Regge-rr of Eq. (4.15). 

Triple Regge description of the experimental pp - pX data 

of Ref. 22 which includes the PfP + fPP term and uses the 
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Regge-ir of Eq. (4.15). The solid lines at -t = 0.33, 0. 25 

0. 20, and 0. 16 (the average t values for each interval) 

use -it- t r =O, b:(O)/bF(O) =l.landap - af = 3. 2. The 

dashed line at t = -0.33 uses +r = 0.25. The dot-dash- 

dot line at t = -0.16 corresponds to 2 ?-r = 0 but b;/b;(O) = 

1.6, a value which was deliberately taken bigger than the 

f/P value for purposes of comparison. 

Fig. 11 Fit with the PfP term. The solid lines, with Gppp = 3. ie 4. St 

correspond to the elementary-n of Eq. (4.16) and the dot- 

dash-dot lines with Gppp = 3. 2e 
5.2t 

to the Regge-n of 

Eq. (4.15). Both use 2 % = 0, b:/bF(O) = 1.1 and 

aP 
- af = 3. 2. The dashed line, by contrast, corresponds 

to taking ap - af = 3.7, with Eq. (4.16 ), at -t = 0. 33 and 

0.16, where it is indistinguishable from the solid line. 

Fig. 12 Fits to the data of Ref. 23 without PfP + fPP and with 

ir = 0, and bF(O)/bF (0) = 1.6, a value which was deliberately 

taken to be larger than the f/P value. The dot-dash-dot line 

did not use any TI exchange and corresponds to ap - af = 3.7, 

G 
PPP 

= 3. le5. 4t. The other lines used the elementary-n 

of Eq. (4.15). The solid line corresponds to ap - af = 3. 7, 

GPPP 
= 2. rJe4*3t and the dashed line to ap - af = 2.7, 

GPPP = 2. Oe3’ 8t. 



-38- FERMILAB-Pub-74/ 78-THY 

Fig. 13 

Fig. 14 

Fig. 15 

Fig. 16 

The parametrization of the solid lines of Fig. 11 extended 

to smaller M2 and compared with the data of Ref. 24 at 

s = 930 GeV2 (solid line). The dashed line uses the 

parametrization of the solid lines of Fig. 12. 

The p=- - pX cross sections (solid lines) predicted from 

PP -f pX using Eqs. (6.1) and (6. 2) and the parametrization 

of the solid lines of Fig. 11. The dashed lines are 46% 

higher to bring them into better agreement with the pp + 

pX normalization of Ref. 23. The difference between the 

solid and dashed lines is thus a measure of experimental 

normalization uncertainties. The upper curve corresponds 

to s = 48 and the lower to s = 76 in each case. The data 

is that of Ref. 27. 

The parametrization of the solid lines of Fig. 12 extended 

to smaller [t 1 but with Gppp (t) increased by 20% 

(dashed lines ). The solid lines represent the data of 

Ref. 29 at -t = 0. 10, 0. 20 and of Ref. 30 at -t = 0. 05. The 

crosses represent the data of Ref. 32. 

Plots of Gppp (t ) (lower curves) and g,,,(t ) = gppp(t ) x 

GPPP(O)‘gPPP (0) (upper curves ). The dashed lines 

correspond to the parametrization of Fig. 15 and the 

solid lines to that of Fig. 17. 
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Fig. 17 

Fig. 18 

A description of the t dependence of the data of Ref. 31 

using the parametrization of Fig. 15 but with the solid 

line of Fig. 16 for Gppp. 

A description of the M2 dependence of the cross section 

of Ref. 31 using the same parametrization as in Fig. 17. 
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ERRATUN 

sorle Applications of f/P Universality to Inclusive PrOcess@s in the Triple- 
Resg:e Region, Louis A. P. Balizs 

ne last four S~CI~~CWSS of the last paragraph of Sec. III should be replaced by 

h'ow 6fff = E&.f by exchange degeneracy. Since i;,,f/gacp 

is indepznr:ent of a, c by f/P universality, it follows 

that we also have gffP = 'z,&*~. 

ILI the sentence preceding Eq. (4.71, 

+ vertex symmetry result Pllluk~ = -gffk 

should read 

result g 
uuk 

= gffi. 


